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The spin hamiltonian 

M J CAOLA 
15 Beechfields, Eccleston, Chorley, Lancashire, UK 

MS received 16 June 1972 

Abstract. We derive a spin hamiltonian V ( S )  for the g fold degenerate level of a system 
perturbed in first order by a physical perturbation V ;  the derivation explicitly relates the 
coefficients a, b, c, . , . of V(S) to the matrix elements VMM, of Vbetween the zero order physical 
basis functions GM. We show how the symmetry of V and time reversal affect V(S) ,  and 
consider three often treated examples as an illustration of the power and unity of our method. 

1. Introduction 

The spin hamiltonian is an example of an equivalent operator, which is often used in 
quantum mechanics : one has a physical system and wishes to investigate an observable 
whose operator is A ;  A is replaced by A,, which, when acting in a convenient ‘fictitious’ 
base li), gives the information sought, for example, the energies and wavefunctions of 
the system. The spin hamiltonian is an operator equivalent to the physical hamiltonian 
of the system and is greatly used in solid state physics, particularly to describe para- 
magnetic ions in crystals (Abragam and Bleaney 1970, Griffith 1961, Koster and Statz 
1959, Bleaney and Stevens 1953). The first explicit example is due to Pryce (1950) where 
the physical spin and the ‘fictitious’ spin in the spin hamiltonian were in fact identical 
(we shall explain what we mean by this later) ; since then its use has proliferated and has 
been implicitly generalized. In many spin hamiltonians in the literature the ‘spin’ bears 
no relation at  all to the physical spin and, indeed, the system could be composed of spin- 
less particles. As a result of this generalization i t  is often not at all obvious how to 
relate the coefficients a, b, c, . . . of the spin hamiltonian to the physical parameters of 
the problem (eg its matrix elements). 

We shall show how to relate the spin hamiltonian coefficients to the physical problem 
for a system with a g fold degenerate level acted on in first order by a perturbation V,  
In general V splits the level and we want to find the resultant eigenvalues (energies) and 
eigenfunctions. In the absence of Vthe level is spanned by a zero order base 41, $J~,  . . . 4g ; 
both I/ and c $ ~  are functions of r l ,  sl, r z ,  s2 , .  . . r,, s,, where r j  and s j  are the position 
and spin of thejth particle (electron) in the n particle problem. 

. . . $M, . . . $ s ,  where g = 2s + 1 ; this is merely 
a formal change of suffix and we have 4i = $ i - s -  1 .  The energies and eigenfunctions 
of V are found by diagonalizing the g x g matrix with elements 

Let us relabel the 4i as $ +, $ - s  + 

= c J $ M M *  V(x)$,,(x) dr 
SZ 

where x = r l ,  sl, . . . r,, s,. We remark in passing that the explicit evaluation of such 
an element may be difficult and tedious, and that the necessary physical understanding 
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and mathematical techniques may not be common to other systems studied. Now 
consider an operator V ( S )  ‘equivalent’ to Vand a base we call ISM) which ‘corresponds’ 
to 1 1 ) ~ ) .  If all the g2 elements (SMIV(S)ISM’) are identical to the VMMf above, then it  
follows the energies and eigenfunctions of V ( S )  in ISM) are the same as those of V in 
t+bM (Stevens 1963, Griffith 1960). We call V ( S )  the spin hamiltonian and define the I S M )  
to be standard angular momentum states : 

S,ISM) = M / S M )  S,ISM) = J{(SfM)(S+M+1)}/S,M* 1) 

(Messiah 1961). Our V ( S )  is a function of spin operators S , ,  S ,  and our task is to find 
the form of this function such that 

(SMI V ( S ) ( S M ‘ )  = VMM. for all M ,  M ’  = - S ,  . . . +S. (1) 

We say that there is a correspondence between the real basis I / / M  and the spin basis ISM) 
such that, if 4 = C , U , $ , ~  is an eigenfunction of the physical problem, then 
14) = C, u,lSM) is an eigenfunction of the spin hamiltonian V(S) .  

A typical term of V ( S )  could be cS+S;; now the coefficient c must be related to the 
VMMs defining the physical problem ; in 5 2 we shall state the relationship explicitly, 
which we believe has not been done before. This relationship between the basic VM.,f, 
and the coefficients {c] is one between the physics of the system and the mathematical 
formalism of the spin hamiltonian. 

2. Analysis 

An operator 0 is ‘abstract’, and we can perform few calculations with it, until it is 
defined in the base Ii) where it acts ; then (Messiah 1961) 

O(i)  = I i ’ )  (i’jO/i’‘) (i”] where 1 li’) (i’l = 1. 
i ’ i “  i’ 

This means that 

V ( S )  = I S M )  (SMI VISM’)  (SM’I and C / S M ) ( S M I  = 1 (2) 
M M ’  M 

for the first order case we treat ; we define the complex number ( S M /  VISM’)  3 vwM,. 
(Notation: we use blunt kets IM) = I t + b M )  for the physical problem and sharp ones 
jM) (MI VIM’) if this is more 
convenient.) Then (2) is 

ISM) for the fictitious spin kets ; we also write VMM, 

which, assuming V to be hermitian, can be written as 

HC means hermitian conjugate and (1 -id,,.) ensures that the real quantity V’,IM) (MI 
is not counted twice. We now need to express the operator IM) (M’I of (4) in terms of 
the components of S ;  firstly 

( S  - M ) ! ( S  + M’)!  1’2Sy-M.IM,)  

I M )  = ( ( S + M ) ! ( S - M ’ ) !  1 
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since M 2 M ‘  (Messiah 1961); secondly, the projection operator IM’)  (M’I is 

= -s 

(Lowdin 1964). Using (9, equation (3) becomes 

This is the form of the spin hamiltonian we require; (6) contains all necessary products, 
powers and permutations of S , ,  S ,  and S- , and its complex coefficients are defined 
directly in terms of the physical matrix elements ‘VMM,, We now give V ( S )  for degeneracies 
of 2 ,3  and 4 (ie S = i, 1, i), which are of particular use for the 32 point groups 9; 

Equations (7) may be algebraically simplified, but we have not done so since they 
show the form of the operators 1M) (M’J. 

We have so far considered one degenerate level IM) of the physical system ; call it 
la,M) E JM) to distinguish it from other levels Ja’M’) with different unperturbed energy 
E,, # Eao.  Suppose we now wish to find the perturbed energies of a. to second order 
in perturbation V ;  this is done by diagonalizing the spin hamiltonian 

V(Z)(S) = V$L,,.(M)(M’I 
M M ’  

in the usual base JM) E Icr,M), where 

(cr,MI Vla”M”)(a”M”( Vla,M‘) VCL. = (a,MI VlaoM’) + 
a”( f ao)M” E,, - E,*# 

Thus to obtain V(’)(S) we replace VMM, by VEL, in (6). Extension to higher order per- 
turbation involves V(”)(S) and VWM, (Messiah 1961). 



1652 M J Caola 

3. The effect of symmetry 

The spin hamiltonian is extensively used for paramagnetic impurities in crystals ; thus 
V has the often high symmetry of one of the 32 point groups 4 and symmetry consider- 
ations are important. The symmetry imposes relationships amongst the YMMs, some 
being necessarily zero and the rest being known multiples of each other. Our spin 
hamiltonian (6) is perfectly general since it contains gz arbitrary real numbers, and it  
can thus apply to any of the 32 point groups. 

In deriving V ( S )  we used the zero-order base $ M  ; as is well known in first-order 
degenerate perturbation theory, any other base $a related to $lM by a unitary trans- 
formation U is equally valid : 

$M = U $ ,  = UM>M,IM’), 
M ‘ 

_ -  
where M ,  M‘ = - S, . . . + S as before. The spin hamiltonian can equally well be written 
in the base $@, when we shall call it v(S); (6) is altered only by replacing the V,, by 
the vqa., and these are related by : 

V&f&f< = (JTIVIJT’) = (MJU+VU/M‘)  = ( U V u + ) w . u . .  

v =  UVU’ (8) 

which, calling P the matrix with elements VMa., is 

as is normal for the matrix representation of an operator. We note in particular that a 
group operation U = R c 9 affects only the coefficients V M M 8  and does nor act on the 
states ISM)  ; this illustrates the fictitious nature of the spin : if S were a real spin, a group 
operation R would act on the I S M )  according to the rotation matrices DG’,.(@y) 
(Messiah 1961). Equation (8) tells us how the form of V ( S )  changes when we change the 
zero-order base functions ; there is thus an infinity of spin hamiltonians for a given 
problem, each corresponding to  the infinity of unitary transformations U .  This should 
be borne in mind when reading the literature, where the nature of the $ M  is often ignored 
or only implied, and apparently different spin hamiltonians may in fact describe the 
same system. 

4. Time reversal 

We shall now show how a satisfactory and consistent time-reversal operator K can be 
defined for V ( S ) .  If the physical perturbation Vis time invariant (KVK’ = V )  then K 
also must leave V(S)invariant and is a symmetry operator of i tsgroup3 This antiunitary 
operator K ,  like the other operators in 9 3, acts on the physical states l M )  and the time- 
reversal V(S) = K V ( S ) K +  of V ( S )  is by definition 

- 
V ( S )  = c (RI V l R ’ ) p ! l )  (R‘J = (MIVIM’)*IR) (WI 

M M ’ MM’ 

where (a) = KIM). The physical system is either Kramers (odd number of electrons) 
or non-Kramers (even number), and it is always possible to choose the physical states 
jM) such that either: (i) lR) KIM)  = JM) for a non-Kramers system, or (ii) 
la) = KIM) = ( -  l)S-MI - M )  for a Kramers system (Abragam and Bleaney 1970, 
Jahn 1938). Thus 

P(S) = 1 (MI VIM’)*IM) (M’I (non-Kramers) 



The spin hamiltonian 1653 

- and 
(MIVIM’)*( - 1 ) Z s - M - M ’  I - M )  ( - M’l 

These last two equations show that V ( S )  is invariant, v(S) = V ( S ) :  in the first 
(MI VIM’)* = (MI VIM’) for ‘real’ states ( M ) ,  and in the second 

V(S)  = (Kramers). 

(MIVlM‘)* = ( - 1 ) Z S - M - M ’  ( - MI VI - M‘) 

for a Kramers system (Jahn 1938). Let the operator I M )  (M’J E F M M . ( S , ,  SJ; then we 
can show from (6)  that ( -  I ) 2 s - M - M ’  I - M )  { - M’I = FMMr( - S,, - S J .  Thus the spin 
hamiltonian 

V S )  = ~ M M , & M @ *  9 Sz) 

U S )  = V & M , F M M @ *  3 S,) (non-Kramers) (94  

V(S)  = V ; M , F M M f (  - S T ,  - S,) (Kramers). (9b) 

has time reversal 
- 

Equations (9)  show that only for a Kramers system do we reverse the spin S under 
time-reversal K ; in a non-Kramers system the spin S is invariant under K .  

We think that (9a) has not been derived before and that our K is not the same as the 
conventional time-reversal operator k,  that is, as found in the literature. It is difficult 
to find an explicit consensus on how the conventional k acts on V ( S )  but we think it is 
as follows: kck’ = c* for a constant c ,  k A k f  = f A +  = + A  for a time-even/odd 
hermitian operator A and k l M )  = (- l)S-MI - M )  for the j c t i t ious  spin states JM), 
this last entailing spin reversal kSk+ = - S  (Abragam and Bleaney 1970). Thus the 
conventional time-reversal of V ( S )  for both Kramers and non-Kramers systems is 

- 
V(S)  3 kV(S)k+ = C k(MIVIM’)k+klM)(M‘lk+ 

I - M )  ( - M’l = c (M(VIM’)*( - 1)ZS-M-M‘ 

= c (MI VIM’)*FM,,( - S F 3 - Sz), 
from which we conclude that V(S)  is invariant only if 

(MI VIM’)* = (- 1 ) Z S - M - M ‘  ( -MlVl-M’) .  

But this holds only for a Kramers system (Jahn 1938) and the conventional k is thus 
incorrect for a non-Kramers system : our K and the conventional k agree for a Kramers 
system and our (9a) using K gives the correct time-reversal for a non-Kramers system. 
We see that the conventional k acts only on fictitious spin states IM) ,  whereas the correct 
K acts on physical states IM). 

We now show how our K operates on the often-treated example of a non-Kramers 
doublet perturbed by a crystal field (which can split the doublet) and a magnetic field H ;  
the perturbation is V = V ,  + T .  H where T = Xy= b(li+2si) and H are time-odd 
vectors under K .  Dropping constant terms, (7) gives 

V(+) = S&I VI+) -( -31 VI -+)} + S,(+l VI -+)+ S-( -41 VI+). 

Choosing IM) = JM) and using the consequent forms of (MITIM’) and (MIVclM‘) gives 

V(4) = S,{(41 Vc14, - (-4 VCl -+)} + ( S ,  + S -  )(+I VCl -+I+ ( S ,  - s-) c (+17;.) - + ) H j .  
j = x ‘ y ’ z  

We now use (9a) to find the time-reversal of V($, which gives V ( i )  = V(4): the spin 
hamiltonian of this perturbed non-Kramers doublet is invariant under time-reversal K ,  
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and we consider that our treatment illuminates the discussion found in the literature, 
where the conventional time-reversal operator is considered (Griffith 1963, Williams 
1967, Mueller 1968, Washimiya et a1 1970). 

5.  Examples 

We now give three further examples which have been extensively studied and which 
show the utility of equation (6). Each also contains a Zeeman perturbation T .  H ,  where 
T = p Cl= (li + 2 ~ ~ ) .  

5.1. A Kramers Doublet 

Pryce (1959) shows in a physically intuitive way that the relative signs of the components 
of the g tensor depend on the choice of physical states IM), and that neglect of this had 
led to interpretative error. We show the same using our formalism for V(S) .  Omitting 
constaat terms, (7) gives 

V(+) = S,{(+l VI+)-( -81 I// -+I} +s,((+ 1 . ~ 1  -$)+(-+I 1/18)> + is,{(+/ ‘VI --+)-(-+I V I + ) ; , .  
With H = ( H x r ,  ti,. , H,,) and Zeeman perturbation V = H .  T this becomes 

‘(4) = S z ,  C , {(+I~I4)-(-fITI-~)}Hi 
I = x .y ’ ,z 

+ S, 2 {(4I TI - 4) + ( - $1 IT;.I~)}H~ + is, 2 ((41 TJ -+)-(-+I ~14))~~. 
i i 

We now transform to principal axes, where the natural crystal axes, the magnetic field 
axes and the spin axes are coincident, and finally have 

v3, = S,Hz{(f1T,If)-(-31T,I --&I 
+SxH,{(flTxI - f ) + ( - 4 1 T x 1 f ) } + i S , H , { ( f I ~ ~ - f ) - ( - ~  21 T ,i& (10) 

3 @,H, + g,S,H, + g ,S ,H, .  

We can now perform Pryce’s unitary transformations - U ,  giving - B(S): (a) change the 
sign of one component : U = [A -:I, that is, 13) = If) and 1-4) = - 1  -3). 
V(+) = s ~ H ~ { @  T,I - f) + (-41 T.#)) + iS,H,{@ $1 -f) - (-a ~JJ)} 

- 

+ SzHz{@ T,@) - ( -31 T,I -f)} 
= -SxHx{(flTxl -f)+(-flT.M} -iS,H,{(t/T,I -f)-(--fIT,lf)} 

+ S,H,{(31 TI+) - (- 51 TI - f)} 
= - g x S x H x  - gyS,H,  + g,SzH, 7 

g x  = -gx3 E, = -g, and E2 = gz. 
that is, 

(b) Interchange components : U = [ y  k], that is, If) = I -f) and 1-9) = If). - - 

Vf) = ~,H,{(fI Cl - f) + ( - 31 Txlt)} + iS,H,{( - 31 $13) - (31 $1 - 4)) 
+ S,H,{( - $1 TI - - (31 T,I5)} 

= gxSxHx - g,S,H, - g,S,H, > 
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IU’V) [ U ‘ p )  IU’l) IU‘K) 1E”a”) 

IM) I -&  I-$> 1-9 13) It> 
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IE”p”) 

13) 
(12) 

that is, 

E x  = gx, E, = -g, and E, = -gz* 

Results (a)  and (b )  agree with Pryce, but we cannot see with him that ( b )  is not an allowed 
physical transformation. 

5.2. Fourfold degeneracy in cubic symmetry 

This T8 level in Oh symmetry has degeneracy four and can be found in an odd-electron 
system (Bleaney 1959). It is always possible to find a unitary transformation U giving 
states +M which transform under group R c Y like a spin 1$M>. (This last sentence 
illustrates the confusion that can arise between any ‘real’ spin the system has and the 
fictitious spin S of V ( S ) ;  and it does not contradict our assertion in 9 3 that R acts on 
the physical states t + h M ,  not on the spin states IM) . )  We assume that this is done and can 
then use tables of coupling coefficients for r8 x T8 = x U‘ (Koster et a1 1963, Griffith 
1961). These give the relations between the VMM, for a Zeeman perturbation V = H .  T 
where T transforms like r4 of 0,. Using the table for r4 in r, x T8 our equation (7) 
becomes 

641/($) = ~H,Sz(12a1f41a2-20~,SZ) 

- 8(2a1 + a2)H -S+(2S, - 3)(2S, + 1)2 + 2(4a, - 3a2)H-S+(2S, - 1)(4S; - 9) 

+4$22H+S:(2SZ - 3)(4S,2 - 1) + HC, (11) 

where a1 and a2 are constants depending on the ion in question. Note that (7) allows 
us to write (11) in a form immediately suitable for calculations ; previous arguments, 
which invoke terms like H,(aSx+ bS:) have to be tediously converted into terms 
containing operators S +  and S -  . 
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We call AE = E( U')  - E(E") the energy splitting in zero magnetic field, let E( U ' )  = 0 and 
put H = H,(O, 0 , l )  for comparison with other treatments : 

~(3) = ~ ~ ( 1 3 )  (51 + if) ($1) + H, (MI T,IM')Iw w'l 
MM' 

We use tables of coupling coefficients for U' x U ' ,  E" x E" and E" x U '  to find the 
elements (MI KIM'), whence 

1024V($) = -&AE(4SI- 1)(2S,+3)(2S,+5)(4SZ- 11) 

+ H ,  ~i(4S;  -9)(2S, - 5)(2S, + 1)(22S, +49) 

+a,(4St-25)(2S2- 1)(2S,- 3)(6S,+7) 

+ ~3(4S; - 1)(2S, + 3)(2S, + 5)(3S, - 7) 

{ 

the constants ai and AE depending on the ion in question. We think that our derivation 
of (13) is simpler than that of the above authors ; in general they use tensor decomposition 
(Grant and Strandberg 1964, Koster and Statz 1959, Hauser 1963). 

6. Discussion 

Our spin hamiltonian (6) is the most general one possible which describes a g fold 
degenerate level split by a perturbation V in first order. It has the advantage of giving 
the coefficients of the conventional spin hamiltonian directly in terms of the physical 
matrix elements VMMf ; for example, the coefficient c of cSg in V(3) of (7) is 

6 4 ~  = VI$) - 8(-$ VI*) + 8( - 41 V /  - 4) + - 31 V (  - f). 
Thus experimental determination of enough conventional coefficients U, b, . . . should 
allow us to  find the VMlw8. The spin hamiltonian (6) is not the only satisfactory one: 
due to the commutation relations [ S , ,  S,] = + S i  and [ S , ,  S - ]  = 2S, we can change 
(6) so that it looks different in form. Because of this and other factors it would often be 
difficult to correlate the V M M s  with the a, b, c, . . . unless the author is quite explicit as to 
his base I / / ~ .  

We have derived V ( S )  in what we consider its most convenient form-maximum use 
is made of S ,  and only the lowest powers p in SP, are used. There are alternative deriva- 
tions (which could all be shown the same by use of the commutation relations) ; one is 
to write 

V ( S )  = 1 l ' M M , l M )  (M'I = VMM,f(M)f(M')SS_-MIS) (SjSS;"' (14) 
MM' 

wheref(M) = {(2S)!(S-M)!/(S+M)!)'" (Messiah 1961). The operator IS) (SI can be 
found by iteration from 
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Iteration of (15) gives IS) (SI in powers S?S: ; explicit values for degeneracies 2, 3, and 
4 are 

1+)(+1 = l -S-S+ 

11)(11 = 1-3S-S+ 

1$)($l = 1 -$S-S+ +&Sz-s: -&s!S: 

Substitution of IS) (SI in (14) gives a spin hamiltonian 

where the uMM,M, ,  are known. The V ( S )  of (16) has a certain pleasing symmetry in that 
only terms S'!Sn+ occur. 

The spin hamiltonian is said to be of great use to the experimentalist since the only 
knowledge needed to use it is that of the spin operators, 

S , (SM)  = M I S M )  S,lSM) = J ( ( S T M ) ( S + M + l ) j l S , M ~ l ) .  

The conventional coefficients a, b, c, . . . are what are measured experimentally and are 
often quoted as fundamental data in their own right ; in this sense the spin hamiltonian 
can be said to unite disparate problems, since they all involve calculations with S only, 
whereas the VMM, of the basic physical problems may involve specialist physics and 
mathematics. This unity can tend to obscure the fact that the a, b, c, . . . must be related 
to the more basic VMM, : our equation (6) shows this relationship explicitly. 
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